Fractional Poincaré inequalities for general measures

Together with Emmnanuel Russ and Yannick Sire we have just uploaded the paper “Fractional Poincaré inequalities for general measures” on

Here is the abstract:

We prove a fractional version of Poincaré inequalities in the context of \mathbb{R}^n endowed with a fairly general measure. Namely we prove a control of an L^2 norm by a non local quantity, which plays the role of the gradient in the standard Poincaré inequality. The assumption on the measure is the fact that it satisfies the classical Poincaré inequality, so that our result is an improvement of the latter inequality. Moreover we also quantify the tightness at infinity provided by the control on the fractional derivative in terms of a weight growing at infinity. The proof goes through the introduction of the generator of the Ornstein-Uhlenbeck semigroup and some careful estimates of its powers. To our knowledge this is the first proof of fractional Poincaré inequality for measures more general than Lévy measures.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s